Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light
نویسندگان
چکیده
0021-9517/$ see front matter Published by Elsevier doi:10.1016/j.jcat.2010.11.001 ⇑ Corresponding author at: Department of Electric Southern California, Los Angeles, CA 90089, USA. Fax: E-mail address: [email protected] (S.B. Cronin). By integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2, we observe enhanced photocatalytic decomposition of methyl orange under visible illumination. Irradiating Au nanoparticles at their plasmon resonance frequency creates intense electric fields, which can be used to increase electron–hole pair generation rate in semiconductors. As a result, the photocatalytic activity of large bandgap semiconductors, like TiO2, can be extended into the visible region of the electromagnetic spectrum. Here, we report a 9-fold improvement in the photocatalytic decomposition rate of methyl orange driven by a photocatalyst consisting of strongly plasmonic Au nanoparticles deposited on top of strongly catalytic TiO2. Finite-difference time-domain (FDTD) simulations indicate that the improvement in photocatalytic activity in the visible range can be attributed to the electric field enhancement near the metal nanoparticles. The intense local fields produced by the surface plasmons couple light efficiently to the surface of the TiO2. This enhancement mechanism is particularly effective because of TiO2’s short exciton diffusion length, which would otherwise limit its photocatalytic efficiency. Our electromagnetic simulations of this process suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. Published by Elsevier Inc.
منابع مشابه
Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation
Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with ...
متن کاملHeterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light.
A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br(-) in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ≥ 400 nm). Compared to AgBr...
متن کاملVisible Light Activity of Nitrogen-Doped TiO2 by Sol-Gel Method Using Various Nitrogen Sources
In order to improve photocatalytic activities of the pure anatase TiO2 under UV and visible light irradiations, a novel and efficient N-doped TiO2 photocatalyst was prepared by sol-gel method. N-doped titania is prepared using the various nitrogen sources such as: triethylamine, N,N,N’,N’-tetramethylethane-1,2-diamine, ethyldiamine, 1,2-phenylenediamine, propanolamine, and...
متن کاملA Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO2
Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray p...
متن کاملSynthesis of CdIn2S4 Microsphere and Its Photocatalytic Activity for Azo Dye Degradation
CdIn2S4 was prepared by ultrasonic spray pyrolysis. The prepared CdIn2S4 was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FSEM), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and N2-sorption techniques. Aqueous photocatalytic activity was evaluated by the decomposition of methyl orange under visible li...
متن کامل